A rainfall storm having approximately constant intensity and duration of 6 hours over a watershed of 785 produced the following dishcarge hydrographQ () shown in the table below.
Hour | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | 18 | 21 | 28 | 44 | 70 | 118 | 228 | 342 | 413 | 393 | 334 | 270 | 216 | 171 | 138 | 113 |
Qb | 18 | 20 | 25 | 32 | 40 | 47 | 54 | 61 | 68 | 75 | 79 | 77 | 73 | 69 | 66 | 63 |
Hour | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | 97 | 84 | 75 | 66 | 59 | 54 | 49 | 46 | 42 | 40 | 38 | 36 | 34 | 33 | 33 |
Qb | 60 | 57 | 55 | 52 | 49 | 47 | 44 | 42 | 40 | 38 | 37 | 35 | 34 | 33 | 33 |
Also shown in the Table.1 estimates of the base flow Qb (). Use the given data to determine:
- The value of the unit volume.
- The intensity of unit volume of effective rainfall for the following durations:
- 2 hours;
- 4 hours;
- 6 hours
- The 6-hour unit hydrograph.
- The theoretical sum of the ordinates of the 6-hour unit hydrograph determined in 3.
- The S-curve.
- The 2-hour unit hydrograph and the theoretical sum of the ordinates.